

Why would you need a 500Amp MOSFET?

Introduction

- Steven Waterhouse
- International Product Marketing Manager

- Stein Hans Nesbakk
- Application Engineer

Applications with high current requirements

We're listing two, but more exist: E-Fuse, load switch, USB VBUS-switch etc...

Condition: over-current, short circuit ...

Condition: Locked rotor

How power applications are evolving

- Power applications are becoming more demanding
 - Larger voltages
 - Larger currents
- Increased impact of application failures
 - Product reliability
 - Legal reliability
 - Safety
 - Brand reputation

What is ID rating?

• Maximum continuous Drain-Source current the MOSFET can sustain while fully enhanced at T_{mb} =25°C and die at max junction temperature

- A single parameter that captures:
 - Thermal performance
 - Temperature rating
 - RDS(on)
 - Silicon die resistance
 - Package resistance

What is considered continuous current?

- When MOSFET reaches thermal stability (>100ms)
- Nexperia tests to ≥30s
- Mounting base @25C (use of heatsink is necessary)

10-3

10-2

Fig. 5. Transient thermal impedance from junction to mounting base as a function of pulse duration

10-4

10-5

Drain current as a datasheet parameter

ID	drain current	V _{GS} = 10 V; T _{mb} = 25 °C; Fig. 2	[1]	-	500	Α
I _{DM}	peak drain current	pulsed; $t_p \le 10 \mu s$; $T_{mb} = 25 \text{ °C}$; Fig. 3		-	2237	Α
R _{DSon}	drain-source on-state resistance	V _{GS} = 10 V; I _D = 25 A; T _j = 25 °C; <u>Fig. 10</u>	-	0.49	0.57	mΩ
		V _{GS} = 4.5 V; I _D = 25 A; T _j = 25 °C; Fig. 10	-	0.65	0.82	mΩ

Device technologies and their impact

- ID max involves MOSFET parameters such as
 - Low R_{DSon}
 - Low R_{th}
 - T_{j(max)} 175°C
 - Bond-wires & Cu-clip
 - Current spreading
 - Package thermals
 - Reduced manufacturing steps
 - Improves reliability
- ID captures these parameters directly and indirectly

nexperia.com

From lab to application

How is this representative of a real circuit?

- Lab measurement conditions are consistent
- "Ideal" heatsink (T_{mb}) kept at 25°C

- T_j max can be reached
- Lab ≥30 seconds

- Measurement is verified in the lab
 - I_D max rating is determined when junction temperature reaches T_i max (175°C)

- Application conditions may vary
- ID capability in applications is T_{mb} dependent
 - \bullet Application max current can be calculated from I_{D} max rating
- In an application, exceeding T_j max is not recommended
- System/application large surge current
 - 0.1-1sec considered DC for MOSFET

public

- May not be considered DC for system
- Application will have safety margins and derating

I_D - Application benefit

- Fully tested ID rating on the datasheet
- ID max rating is underpinned by:
 - Package technology
 - Silicon technology
- Thermal performance
- Manufacturing quality
- Gives a direct way of understanding complex MOSFET performance in an application when it matters the most

I_D in an application

- E-fuse/Battery isolation
 - Time between, over-current situation, its detection and reaction
- Motor Drive applications
 - Time between rotor locks and control system reacts becomes critical
- I_D Max capability becomes critical in the time between high system current occurring and the system reacting
 - Needs to switch off reliably
 - Cable inductances strong ruggedness (avalanche)
 - Passes though linear mode when switching Safe Operating Area

11 nexperia.com public

Nexperia products

LFPAK88	Current rating (DC)	Pulse current rating, ${ m I}_{ m DM}$
PSMNR55-40SSH	500A	2,237A
PSMN2R0-100SSF	267A	1,070A

LFPAK56	Current rating (DC)	Pulse current rating, I_{DM}
PSMNR51-25YLH	380A	2,174A
PSMN1R5-50YLH	200A	1159A
PSMN3R9-100YSF	120A	690A

public

Nexperia Resources

- Please visit <u>nexperia.com/mosfets</u>
- Request Samples
 - Contact your local sales representative or distributor
 - Buy online from <u>nexperia.com/shop</u>

Application Notes

AN90016

Maximum continuous currents in NEXPERIA LFPAK power MOSFETs

Rev. 1.1 — 3 September 2020

application note

Videos

LFPAK56D half-bridge MOSFETs

Design considerations with submilliohm MOSFETs – Quick Learning

Quick Learning: PCB layout options for MOSFETs in low/medium ...

Quick Learning: Double pulse testing - assessing switching ...

13 nexperia.com public

Please share your questions and insights

EFFICIENCY WINS.