

Paralleling MOSFETs in high power applications

September 2021

Introduction

- Phil Ellis
- Principal Applications Engineer

- Neil Massey
- International Product Marketing Manager

Contents

- Overview
- MOSFET parameters & influence on dissipation
- Circuit optimization
- PCB Layout influence
- Summary

Parallel MOSFET Applications

Motor driveSwitched mode PSU

• E-fuse

MOSFET Parameters

V_{GS(th)} Spread: Current Sharing

- M1: V_{GS(th)} = 2.4 V
- M2: V_{GS(th)} = 3.0 V

• M3: V_{GS(th)} = 3.6 V

Worst case spread from datasheet

V _{GS(th)} [V]	Conditions
2.4 (min)	$V_{PC} = 12 V$
3.0 (typ)	
3.6 (max)	$I_D = I MA$

R_{DS(on)} Spread: Current Sharing

0.62 (min)	$V_{GS} = 10 V_{c}$
0.88 (typ)	$I_{D} = 25 A,$
1.00 (max)	T _j = 25 °C
Sharing Switching	Sharing Conduction
41%39%	31%32% 28%29%

M3

Q_{G(tot)} Spread: Current Sharing

- M3: Q_{G(tot)} = 158.0 nC

Worst case spread • M2: $Q_{G(tot)} = 125.7 \text{ nC}$ from datasheet

		Q _{GS} [nC]	Condi	tions
		27.148		
ead		40.024	$V_{DS} =$	32 V,
		Q _{GD} [nC]	$I_D = 2$	25 A,
		17.008	$V_{GS} =$	10 V
		34.211		
	1	Sharing Switching	■ Sharing	Conductio
	100%			
	67%			
Energy	/	36%	220/220/	47%
	33%	21%	32%33%	31
		2170		
	0%			
		M1	M2	M3

Circuit Optimisation

Localized Gate Resistor Split

Impact of Gate Resistor Split

PCB Layout

Temperature Dependency: Thermal Coupling

- $R_{DS(on)}$ Positive Temperature Coefficient improves sharing when each paralleled MOSFET is thermally isolated from the others – $R_{th(coupling)}$ is high
- However the junction temperature can easily exceed the 175 °C limit!
- Good thermal coupling between paralleled MOSFETs is preferred as it allows for overall lower T_{j}

Current Density Simulation

- MOSFET parameters when paralleling: consider V_{th} as the most important, then $R_{DS(on)}$ and finally Q_q has the least influence on behaviour overall.
- Circuit layout should be considered:
 - optimise thermal coupling
 - current path should be balanced use simulation
- For more detail Nexperia have a new paralleling

applications note AN50005 available now

- Interactive Application Note; IAN coming soon
- For more information, please go to <u>www.nexperia.com</u>

Dooument Inform	ation		
Information	Content		
Abstract	This application, potentiary and an application of the second and application of the second and application of the second and the second application of the second to the		

Please share your questions and insights

EFFICIENCY WINS.