

nexperia

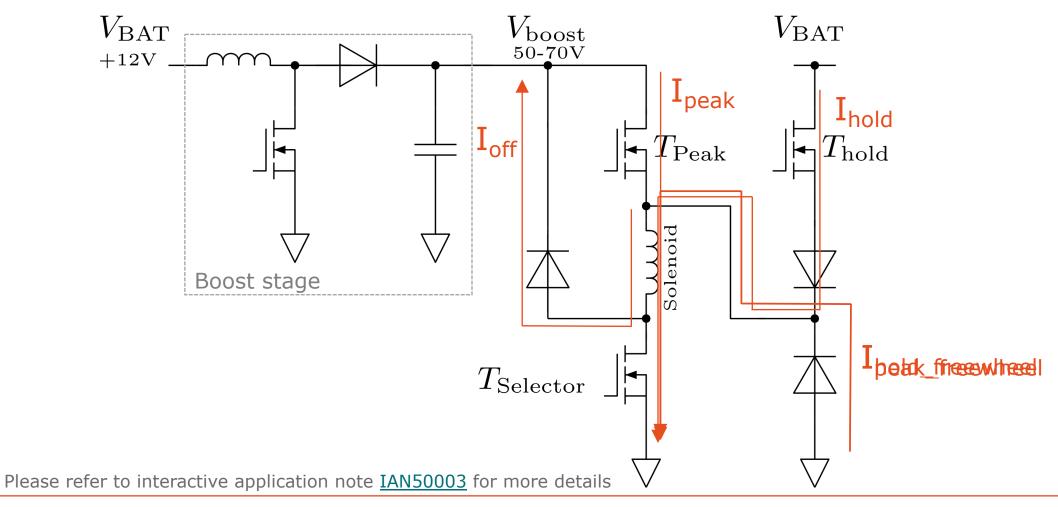
Schottky, Silicon Germanium or Recovery (PN) rectifiers?

How to achieve extra efficiency and reliability in LED drivers or solenoid drives by choosing the most suitable power diode

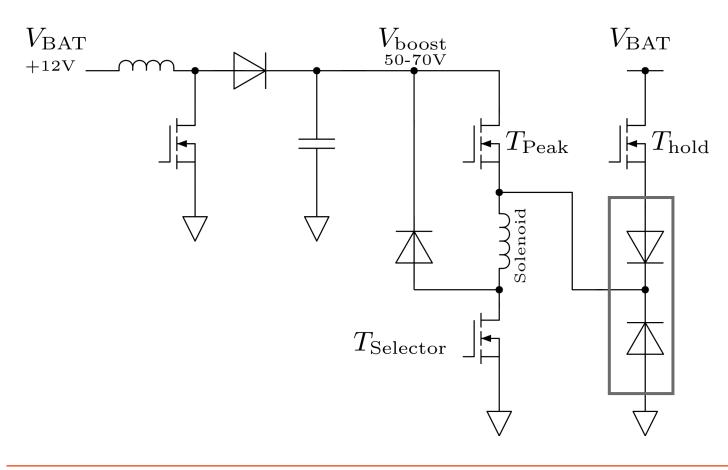
Introduction

- Dr.-Ing. Reza Behtash
- Application Marketing Manager

Agenda:


- Diodes in solenoid drivers
- Diodes in LED drivers

Diodes in solenoid drivers


Solenoid driver

With boost converter in a fuel injection system

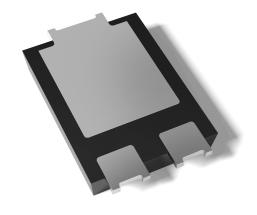
What are the requirements for the diodes?

- Dual die configuration
- Low V_f for low power dissipation (Peak currents $\sim 3-10$ A)
- Very low leakage at high ambient temperature (« 500 uA at 130 °C)
- At least 100 V blocking voltage
- Switching losses not dominating
- High IFSM robustness
- Wide SOA
- High reliability

Recovery Rectifiers | Product Portfolio

Nexperia's has a complete 200V portfolio and building the 650V portfolio

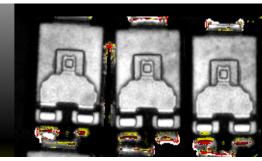
Туре	Package	V _R max [V]	I _{f (AV)} max [A]	V _f max @ I _{F(AV)} [mV]	I _R max [μΑ]	t _{rr} typ [ns]	Configu- ration	T _{j (max)} [°C]	AEC- Q101
PNE20010ER	CFP3	200	1	930	0.2	10	single	175	✓
PNE20020ER	CFP3	200	2	980	0.2	10	single	175	✓
PNE20020EP	CFP5	200	2	950	1	10	single	175	✓
PNE20030EP	CFP5	200	3	980	1	13	single	175	✓
PNE20040CPE	CFP15B	200	2 x 2	960	1	13	dual, cc	175	✓
PNE20060CPE	CFP15B	200	2 x 3	940	1	13	dual, cc	175	✓
PNE20080CPE	CFP15B	200	2 x 4	930	1	12	dual, cc	175	✓
PNE200100CPE	CFP15B	200	2 x 5	950	1	12	dual, cc	175	✓
PNU650V10ER	CFP3	650	1	1250	5	35	single	175	√
PNU650V10EP	CFP5	650	1	1250	5	35	Single	175	✓


public

Recovery Rectifiers in CFP15B package

Highly reliable clip bonded Flatpower package CFP15B

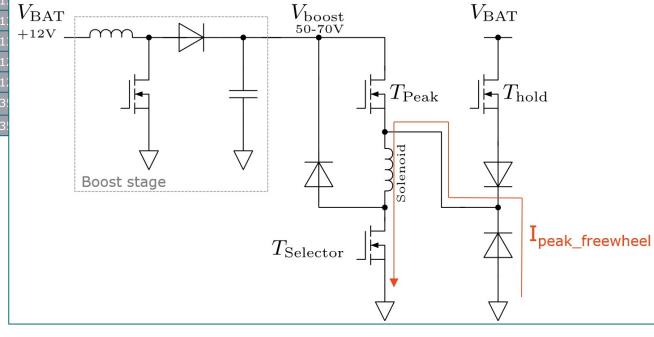
- Solid copper clip:
 - low parasitic inductance
 - high surge robustness (IFSM)
- Exposed heat sink for best thermal performance
- Single and dual die configuration
- 60% space saving on PCB compared to DPAK
- Tin-plated lead ends optimized for AOI


Reliability beyond AEC-Q101

- Extended reliability testing 2 times AEC-Q101 qualified
- Zero delamination
- Board level reliability tested:
 - bending test
 - vibration test
 - power temperature cycling
 - drop test

12mm bending

Zero delam after MSL



Recovery Rectifiers | Product Portfolio

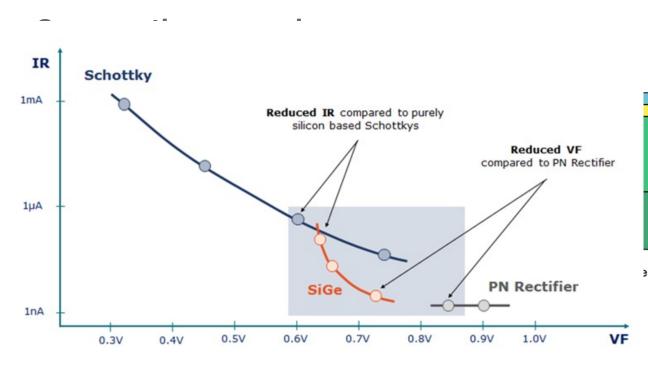
Nexperia's has a complete 200V portfolio and building the 650V portfolio

Туре	Package	V _R max [V]	I _{F(AV)} max [A]	V _F max @ I _{F(AV)} [mV]	I _R max [μΑ]	t _{rr} typ [ns]	Confi
PNE20010ER	CFP3	200	1	930	0.2	10	S
PNE20020ER	CFP3	200	2	980	0.2	10	S
PNE20020EP	CFP5	200	2	950	1	10	S
PNE20030EP	CFP5	200	3	980	1	1. 17	
PNE20040CPE	CFP15B	200	2 x 2	960	1	1.	BAT
PNE20060CPE	CFP15B	200	2 x 3	940	1	1: +1	$^{2V} +$
PNE20080CPE	CFP15B	200	2 x 4	930	1	12	
PNE200100CPE	CFP15B	200	2 x 5	950	1	12	
PNU650V10ER	CFP3	650	1	1250	5	3!	
PNU650V10EP	CFP5	650	1	1250	5	3!	

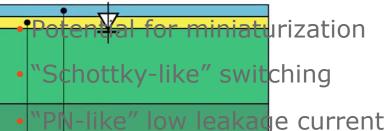
How to improve Vf without sacrificing advantages of recovery rectifiers (low leakage, thermal stability)?

 $T_{J(max)}$

[°C]


iguration

AEC-Q101



SiGe Rectifiers | An Innovative Technology

Silicon germanium (SiGe) – a technology with unique value propositions

• Excellent I_r/V_f trade-off – reducing conduction losses

- State-of-the-art Safe Operation Area thermally stable up to almost $T_A = 175$
- 2x AEC-Q101 qualified portfolio

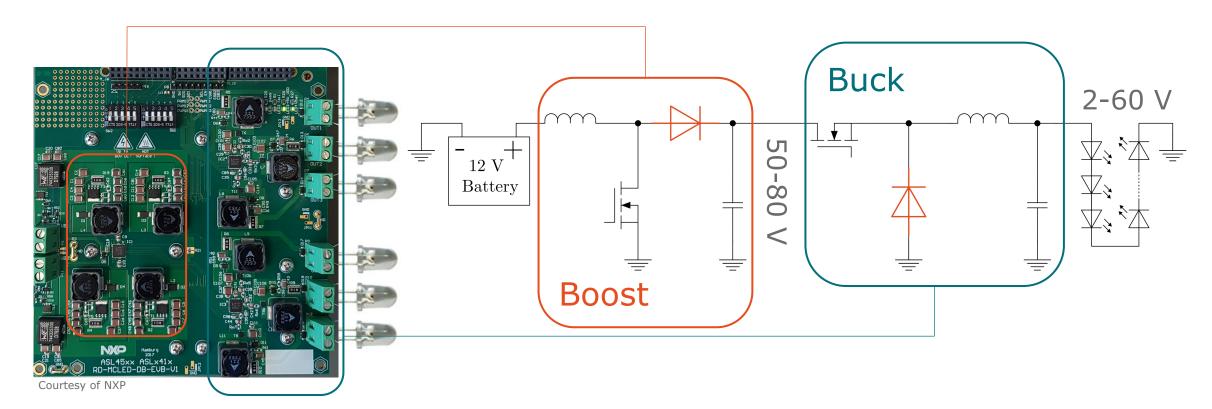
SOA - SiGe technology

Life comparison to same class Schottky rectifier

Experiment set up:

- Schottky and SiGe diode (120 V) in reverse bias
- Chuck temperature is increased, and the leakage currents are monitored

Result:


- SiGe diode offering an extremely wide SOA
- SiGe diodes leakage current orders of magnitude less than Schottky counterpart

X.

Diodes in LED drivers Asynchronous LED drivers

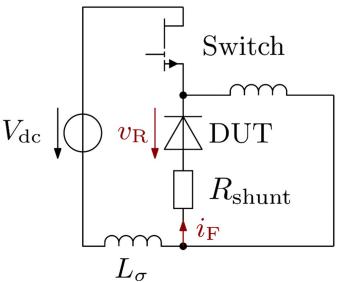
Switched-mode converter

For instance, asynchronous boost / buck stage of a LED driver

X.

Switched-mode converter

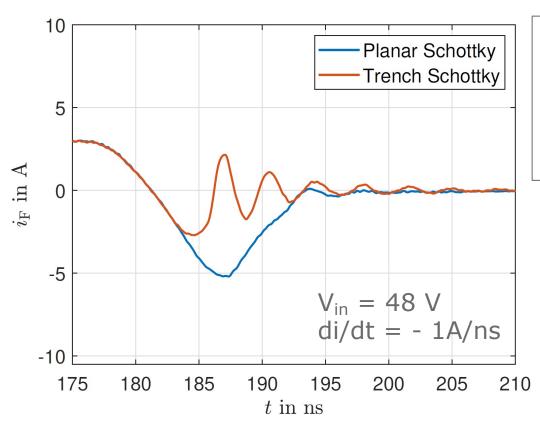
Requirements concerning the rectifiers in the boost and buck stage


- Low reverse recovery charge Q_{rr} : for every switching cycle the reverse recovery charge Q_{rr} is dissipated in the MOSFET, a major contribution to the switching losses of the converter
- **High thermal stability:** in high power density applications, rectifiers with a broad Safe operating area (SOA) are needed. Thermal runaway of the rectifier must not happen
- Low electromagnetic emission: the rectifier is supposed to have minimal impact on the conducted and radiated electromagnetic emission levels of the converter
- Low forward voltage-drop: voltage forward drop of the rectifier impacting the conduction losses though not dominating the overall efficiency

Double pulse test circuit

Standard method for measuring the switching performance

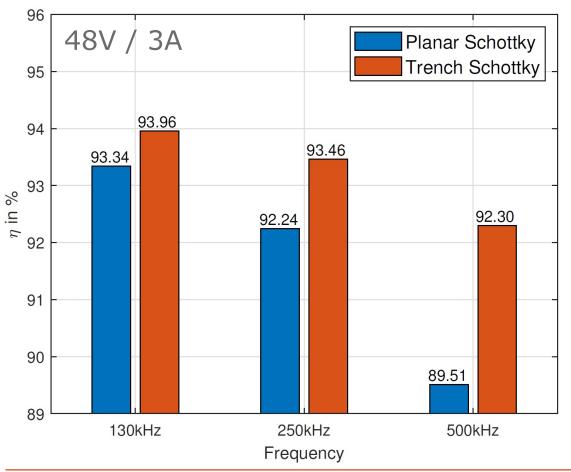
- Collaboration with Helmut-Schmidt-University in Hamburg
- A double pulse test characterizes all switching phases of the DUT:
 - First pulse characterizes the turn-on behavior
 - -Second pulse characterizes the turn-off behavior
- High di/dt $(-1A/ns) V_{DC} = 48 V$
- DUT at defined temperature
- Optimized design to keep Ls minimal (~5 nH)



14 nexperia.com public

Superior switching performance with Trench Schottky

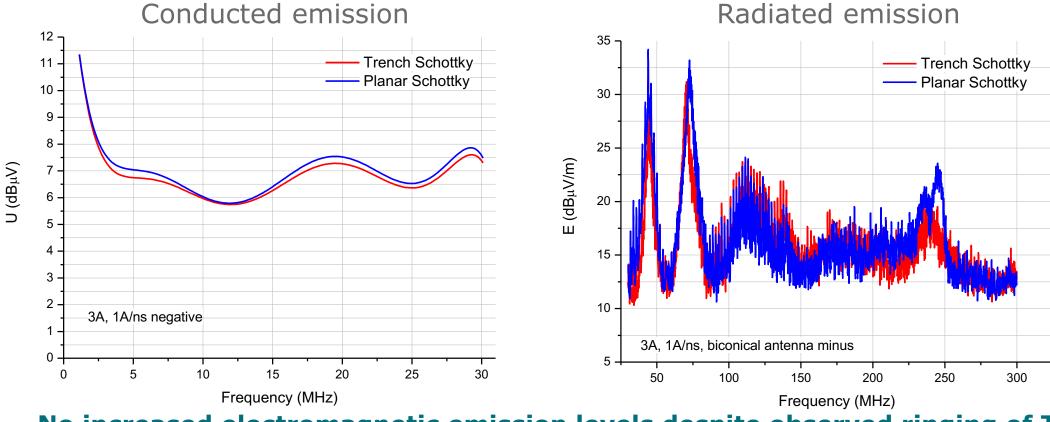
Double pulse measurements at $T_{amb} = 85^{\circ}$


	$Q_{\rm rr}^{T_{\rm c}=25^{\circ}{\rm C}}[{\rm nC}]$	$Q_{\rm rr}^{T_{\rm c}=85^{\circ}{\rm C}}[{\rm nC}]$	$I_{ m rrm}^{T_{ m c}=25^{ m oC}}[{ m A}]$	$I_{\rm rrm}^{T_{\rm c}=85^{\circ}{\rm C}}[{ m A}]$
Trench Schottky	8.6	8.5	2.8	2.7
SiGe	19.1	25.5	4.4	4.9
Recovery A	37.3	52.1	7.1	8.1
Planar Schottky	26.3	33.5	5.2	5.2
Recovery B	33.5	44.4	8.2	8.9

Trench Schottky Vs. planar Schottky:

- Less stored charge Q_{rr} of Trench rectifier compared to planar Schottky rectifier
- No increase of Q_{rr} of Trench rectifier over temperature (25 °C \rightarrow 85 °C)

Low Q_{rr} – high converter efficiency with Trench


48 V-12 V buck converter as test vehicle – 3 A rectifiers in SOD128

- Higher converter efficiency achieved with
 Trench rectifier compared to planar Schottky
- The higher the frequency, the higher switching losses, the bigger the Trench advantage

Impact on electromagnetic emission

48 V-12 V buck converter as test vehicle – 3 A rectifiers in SOD128

No increased electromagnetic emission levels despite observed ringing of Trench rectifier during switching

Conclusion

- Solenoid driver:
 - Go with 200V hyper fast recovery rectifier
 - Use dual die configuration in CFP15B package for state-of-the-art reliability
 - If you want to optimize further by reducing Vf, take a look at the SiGe technology
- LED driver:
 - The best choice for highest efficiency is the Trench Schottky
 - Keep in mind Nexperia Trench Schottkys products deliver extra efficiency and thermal safety margin

X

How to receive more information

- Interactive application note on driving solenoids: Search IAN50003 on www.nexperia.com
- Find the suitable Trench Schottky rectifier: www.nexperia.com/trench-schottky-rectifiers
- Find out more about SiGe rectifiers:
 www.nexperia.com/sige-rectifiers
- Visit our efficiencywins blogs: https://efficiencywins.nexperia.com/ (filter: diodes)
- Contact us directly
- Sample boxes can be ordered from Power Live page

Please share your questions and insights

EFFICIENCY WINS.