

nexperia

Automotive ASFETs for Repetitive Avalanche

How to maintain reliability and performance in Automotive Applications using repetitive avalanche MOSFETs

September 2021

Introduction

- Richard Ogden
- International Product Marketing Manager

- Nandor Bodo
- Application Engineer

Automotive ASFETs for Repetitive Avalanche

Maintaining reliability and performance in solenoid drives

- What is avalanche?
- Application fit & Portfolio
- Enhanced datasheets
- Worked examples
- Design in support tools

What is Avalanche?

Avalanching a MOSFET

How does the circuit work?

Avalanche Definitions

Nexperia have an offering to cover both single shot and repetitive events

Single Shot avalanche:

- A random occurrence of an over voltage transient (fault condition)
- Possibly the result of a failure within the application
- Low frequency of occurrence during the MOSFET's lifetime

Repetitive avalanche:

- The avalanche event has been designed into the application
- The MOSFET can be expected to go into avalanche on a regular basis for numerous cycles

Application Fit & Portfolio

Solenoid control

Multiple circuit topologies to control solenoids (actuators)

- Most efficient
- High cost and complexity

- Lowest efficiency
- Lower cost and complexity

- More efficient vs Freewheel
- Timing critical to ensure within MOSFET SOA

- Similar efficiency to active clamp
- Simplest design
- Lower BOM cost
- Smaller module

*typical profiles are 1bn cycles for fuel injection and <100M for others

Application Fit

Repetitive Avalanche MOSFETs

Repetitive Avalanche MOSFETs

Portfolio value proposition

Silicon Technology	Performance	No of Types	40V	60V
Repetitive Avalanche rugged	$R_{DS(on)}$ max [m Ω]	4	25	13 - 52

10 nexperia.com

Enhanced Datasheets

Typical MOSFET Datasheet BUK764R0-55B

- All Automotive MOSFET datasheets contain single shot avalanche curve
- Graph contains single shot capability for $T_j = 150^{\circ}$ C and $T_j = 25^{\circ}$ C
- Graph also includes repetitive avalanche capability
- Based on using 5K temperature rise and significantly de-rated

Single-shot (initial T_j = 25 °C and 150 °C) and repetitive (Rep. Ava) avalanche ruggedness SOAR curves of BUK764R0-55B limited to a $T_{j(max)}$ of 175 °C and $T_{j(avg)}$ of 170 °C, respectively

Repetitive Avalanche MOSFETs

Enhanced datasheets

Based on T_j rise of 30°C (previously 5°C)

- Stay within (under) repetitive avalanche Safe Operating Area curve
- 2. Stay within (under) cycle limit
- 3. Stay below 175°C T_j max

Repetitive Avalanche MOSFETs

Enhanced MOSFET datasheets

- As part of repetitive avalanche functions there is a penalty in terms of $R_{DS(on)}$
- At 10% of intended number of avalanche cycles $R_{DS(on)}$ will increase by ~25%
- By device failure there will be 45% increase in $R_{DS(on)}$

Worked Examples

Repetitive Avalanche in Solenoid Drives

• Avalanche mode of operation appears during turn off

Designing in RA MOSFETs – Fuel Injection

Example A solenoid drive

Designing in RA MOSFETs

Example B ABS valves

Thermal Simulation

- Thermal simulation link in description
- PartQuest: New tool to adapt to customer application
- Voltage source to guide current reference
- MOSFETS selectable from list or implemented from Nexperia website
- Cauer model of MOSFETs available on request or online
- Cauer model of PCB to be supplied by costumer

Materials

Available online content

Please visit <u>Nexperia.com/asfets</u>

News and blogs

Videos

Press release Dec 9, 2020 Rugged AEC-Q101 MOSFETs from Nexperia offer ...

Blog article Dec 7, 2020 How to save space, reduce component count and ...

Interactive application notes

IAN50003 - Driving solenoids in automotive applications

Datasheets

Explande dive current marginaria Reschilde schemet Reschilde scheme

Quick Learning: how to select a power MOSFET for your ...

Quick Learning: four ways to control automotive ...

Quick Learning: Single shot avalanche ruggedness of MOSFETs

BUK9K13-60RA

Dual N-channel 60 V, 12.5 mOhm logic level MOSFET in LFPAK56D using Repetitive Avalanche technology 2 December 2020 Product data sheet

1. General description

Dual, logic level N-channel MOSFET in an LFPAK56D package, using Application Specific (ASFET) repetitive avalanche silicon technology. This product has been designed and qualified to AEC-Q101 for use in repetitive avalanche applications.

2. Features and benefits

21 nexperia.com

Please share your questions and insights

EFFICIENCY WINS.