×

NPIC6C4894PW

Power logic 12-bit shift register; open-drain outputs

The NPIC6C4894 is a 12-stage serial shift register. It has a storage latch associated with each stage for strobing data from the serial input (D) to the parallel open-drain outputs (QP0 to QP11). Data is shifted on positive-going clock (CP) transitions. The data in each shift register stage is transferred to the storage register when the latch enable (LE) input is HIGH. Data in the storage register drives the gate of the output extended-drain NMOS transistor whenever the output enable input (OE) is HIGH. A LOW on OE causes the outputs to assume a high-impedance OFF-state. Operation of the OE input does not affect the state of the registers. Two serial outputs (QS1 and QS2) are available for cascading a number of NIC6C4894 devices. Serial data is available at QS1 on positive-going clock edges to allow high-speed operation in cascaded systems with a fast clock rise time. The same serial data is available at QS2 on the next negative going clock edge. It is used for cascading NPIC6C4894 devices when the clock has a slow rise time. The open-drain outputs are 33 V/100 mA continuous current extended-drain NMOS transistors designed for use in systems that require moderate load power such as LEDs. Integrated voltage clamps in the outputs, provide protection against inductive transients. This protection makes the device suitable for power driver applications such as relays, solenoids and other low-current or medium-voltage loads.

该产品已停产。参见单击此处了解停产信息和替代产品。

Features and benefits

  • Specified from ‑40 °C to +125 °C

  • Low RDSon

  • 12 Power EDNMOS transistor outputs of 100 mA continuous current

  • 250 mA current limit capability

  • Output clamping voltage 33 V

  • 30 mJ avalanche energy capability

  • Low power consumption

  • Latch-up performance exceeds 100 mA per JESD 78 Class II level A

  • ESD protection:

    • HBM JS-2011 Class 2 exceeds 2500 V

    • CDM JESD22-C101E exceeds 1000 V

Applications

  • LED sign

  • Graphic status panel

  • Fault status indicator

参数类型

型号 Product status VCC (V) Logic switching levels Output drive capability (mA) tpd (ns) fmax (MHz) Nr of bits Power dissipation considerations Tamb (°C) Rth(j-a) (K/W) Ψth(j-top) (K/W) Rth(j-c) (K/W) Package name
NPIC6C4894PW End of life 4.5 - 5.5 CMOS 100 90 10 12 low -40~125 96 3.4 40 TSSOP20

PCB Symbol, Footprint and 3D Model

Model Name 描述

封装

下表中的所有产品型号已停产。参见表 停产信息 了解更多信息。

型号 可订购的器件编号,(订购码(12NC)) 状态 标示 封装 外形图 回流焊/波峰焊 包装
NPIC6C4894PW NPIC6C4894PWJ
(935302552118)
Discontinued / End-of-life C6C4894 SOT360-1
TSSOP20
(SOT360-1)
SOT360-1 SSOP-TSSOP-VSO-WAVE
SOT360-1_118

环境信息

下表中的所有产品型号已停产。参见表 停产信息 了解更多信息。

型号 可订购的器件编号 化学成分 RoHS RHF指示符
NPIC6C4894PW NPIC6C4894PWJ NPIC6C4894PW rohs rhf rhf
品质及可靠性免责声明

文档 (11)

文件名称 标题 类型 日期
NPIC6C4894 Power logic 12-bit shift register; open-drain outputs Data sheet 2017-04-07
AN11537 Pin FMEA for NPIC Family Application note 2019-10-07
SOT360-1 3D model for products with SOT360-1 package Design support 2020-01-22
npic6c4894 NPIC6C4894 IBIS model IBIS model 2016-05-29
Nexperia_document_leaflet_Logic_NPIC_ShiftRegisters_201906 NPIC Logic Shift Registers Leaflet 2019-07-12
Nexperia_package_poster Nexperia package poster Leaflet 2020-05-15
TSSOP20_SOT360-1_mk plastic, thin shrink small outline package; 20 leads; 0.65 mm pitch; 6.5 mm x 4.4 mm x 1.1 mm body Marcom graphics 2017-01-28
NPIC6C4894PW_Nexperia_Product_Reliability NPIC6C4894PW Nexperia Product Reliability Quality document 2022-05-04
SSOP-TSSOP-VSO-WAVE Footprint for wave soldering Wave soldering 2009-10-08

支持

如果您需要设计/技术支持,请告知我们并填写 应答表 我们会尽快回复您。

模型

文件名称 标题 类型 日期
npic6c4894 NPIC6C4894 IBIS model IBIS model 2016-05-29
SOT360-1 3D model for products with SOT360-1 package Design support 2020-01-22

PCB Symbol, Footprint and 3D Model

Model Name 描述

How does it work?

The interactive datasheets are based on the Nexperia MOSFET precision electrothermal models. With our interactive datasheets you can simply specify your own conditions interactively. Start by changing the values of the conditions. You can do this by using the sliders in the condition fields. By dragging the sliders you will see how the MOSFET will perform at the new conditions set.